Соискатель: ПРЯЖНИКОВ ДМИТРИЙ ВЛАДИМИРОВИЧ

Тема диссертационной работы:

«СТРУКТУРА И СВОЙСТВА МОДИФИЦИРОВАННЫХ МАГНИТНЫХ НАНОМАТЕРИАЛОВ ДЛЯ СОРБЦИОННОГО КОНЦЕНТРИРОВАНИЯ»

Шифр и наименование научной специальности и отрасли науки, по которым выполнена диссертация:

1.4.2 – АНАЛИТИЧЕСКАЯ ХИМИЯ; ХИМИЧЕСКИЕ НАУКИ

На заседании **21 ИЮЛЯ 2022 ГОДА** ДИССЕРТАЦИОННЫЙ СОВЕТ 24.1.195.01 на базе Федерального государственного бюджетного учреждения науки Ордена Ленина и Ордена Октябрьской Революции Института геохимии и аналитической химии им. В.И.Вернадского Российской академии наук **ПРИНЯЛ РЕШЕНИЕ ПРИСУДИТЬ ПРЯЖНИКОВУ** ДМИТРИЮ ВЛАДИМИРОВИЧУ УЧЕНУЮ СТЕПЕНЬ **КАНДИДАТА ХИМИЧЕСКИХ НАУК** ПО СПЕЦИАЛЬНОСТИ **АНАЛИТИЧЕСКАЯ ХИМИЯ** за установление связей между поверхностной структурой и сорбционными свойствами высокодисперсных магнитных материалов, а также получение и исследование новых материалов, перспективных для решения аналитических, технологических и биомедицинских задач.

При проведении тайного голосования диссертационный совет в количестве 21 человека (13 присутствовали на заседании очно, 8 – в удаленном интерактивном режиме), из них 15 докторов наук по специальности 1.4.2 – аналитическая химия, в том числе 4 доктора наук, обеспечивающих химические науки, участвовавших в заседании, из 28 человек, входящих в состав совета, проголосовали: 320, против – 321; не голосовали – 320.

(Протокол № 10 от 21.07.2022).

ЗАКЛЮЧЕНИЕ ДИССЕРТАЦИОННОГО СОВЕТА 24.1.195.01,

созданного на базе Федерального государственного бюджетного учреждения науки Ордена Ленина и Ордена Октябрьской Революции Института геохимии и аналитической химии им. В.И. Вернадского Российской академии наук по диссертации на соискание ученой степени кандидата наук

аттестационное дело №	_
решение диссертационного совета от 21.07.2022 № 10	

О присуждении **Пряжникову Дмитрию Владимировичу**, гражданину России, ученой степени кандидата химических наук.

Диссертация «Структура и свойства модифицированных магнитных наноматериалов для сорбционного концентрирования» по специальности 1.4.2 — аналитическая химия принята к защите 20 мая 2022 года (протокол заседания N 4) диссертационным советом 24.1.195.01, созданным на базе Федерального государственного бюджетного учреждения науки Ордена Ленина и Ордена Октябрьской Революции Института геохимии и аналитической химии им. В.И. Вернадского Российской академии наук (ГЕОХИ РАН). 119991, ГСП-1, Москва, ул. Косыгина, 19. Приказ о создании совета № 75/нк от 15.02.2013.

Соискатель **Пряжников Дмитрий Владимирович**, 28 февраля 1978 года рождения, в 2000 году окончил Российский химико-технологический университет им. Д.И. Менделеева. Работает научным сотрудником в лаборатории геохимии и аналитической химии благородных металлов ГЕОХИ РАН.

Диссертация выполнена в лаборатории геохимии и аналитической химии благородных металлов ГЕОХИ РАН.

Научный руководитель — доктор химических наук, **Кубракова Ирина Витальевна**, ГЕОХИ РАН, лаборатория геохимии и аналитической химии благородных металлов, главный научный сотрудник, заведующая лабораторией.

Официальные оппоненты:

Апяри Владимир Владимирович, доктор химических наук, Федеральное государственное бюджетное образовательное учреждения высшего образования «Московский государственный университет имени М.В. Ломоносова», химический факультет, кафедра аналитической химии, главный научный сотрудник.

Гражулене Светлана Степановна, доктор химических наук, Федеральное государственное бюджетное учреждение науки Институт проблем технологии микроэлектроники и особо чистых материалов Российской академии наук (ИПТМ РАН), экспериментально-технологическая лаборатория, главный научный сотрудник дали положительные отзывы на диссертацию

Ведущая организация Федеральное государственное бюджетное образовательное учреждение высшего образования Кубанский государственный университет (ФГБОУ ВО «КубГУ», г. Краснодар) в своем положительном отзыве, подписанном Темердашевым Зауалем Ахлоовичем, доктором химических наук, профессором, заведующим кафедрой аналитической химии, указала, что

актуальность диссертационной работы обусловлена тем, что для направленного магнитных наночастиц с необходимыми модифицированных сорбционными свойствами требуется информация о структуре поверхностных модифицирующих оболочек, которую можно регулировать варьированием условий модификации. В результате необходима комплексная систематизация данных о наиболее перспективных видах магнитных наночастиц, методах исследования их структуры и свойств, выявлении взаимосвязей между ними. Принципиальная работы В исследовании закономерностей новизна заключается формирования упорядоченных слоев модификаторов на поверхности магнитных наночастицы. гле получены И охарактеризованы модифицирующих агентов использованы: поверхностно-активные вешества. кремнийорганические соединения, наноразмерные частицы благородных металлов, биологические активные вещества. Диссертантом количественно оценена плотность заполнения сорбционного слоя поверхности наноразмерного магнетита при различных условиях нагрева. С учетом полученных результатов соискатель обосновал и получил сорбенты на основе наночастиц оксидов железа, определил их аналитические характеристики и оценил эффективность использования полученных магнитных сорбционных материалов в экоаналитическом контроле загрязненности водных объектов. Практическая значимость работы связана с получением новых знаний по сорбционным свойствам полученных магнитных сорбционных материалов. Отдельно следует отметить разработанный соискателем способ хроматографического определения фенолов в природных водах с предварительным концентрированием аналита на модифицированном магнетите.

Соискатель имеет **21** опубликованную работу, в том числе по теме диссертации опубликовано **18** работ, из них в рецензируемых научных изданиях опубликовано **10** статей. Основное содержание диссертации изложено в следующих работах:

- 1. Кубракова И.В., Кощеева И.Я., **Пряжников Д.В.**, Мартынов Л.Ю., Киселева М.С., Тютюнник О.А. Микроволновый синтез, свойства и аналитические возможности наноразмерных сорбционных материалов на основе магнетита // Журн. аналит. химии. 2014. Т. 69. № 4. С. 378 389.
- 2. **Pryazhnikov D.V.**, Kubrakova I.V., Kiseleva M.S., Martynov L.Yu., Koshcheeva I.Ya. Preparation and structural characterization of nanosized magnetic solid-phase extractants // Mend. Comm. 2014. V. 24. № 2. P. 130 132.
- 3. **Пряжников** Д.В., Киселева М.С., Кубракова И.В. Поверхностно-модифицированный магнитный наноразмерный сорбент для МТФЭ-ВЭЖХ-УФ определения 4-нонилфенола в природных водных объектах // Аналитика и контроль. 2015 . Т. 19. № 3. С. 220 229.
- 4. **Пряжников Д.В.**, Ефанова О.О., Киселева М.С., Кубракова И.В. Микроволновый синтез наноразмерных материалов типа "ядро-оболочка" на основе магнетита, функционализированного золотом и доксорубицином // Российские нанотехнологии. 2017. Т. 12. № 3-4. С. 69-75.
- 5. Киселева М.С., **Пряжников Д.В.**, Кубракова И.В. Магнитный сорбент с мезопористой оболочкой для одновременного концентрирования экотоксикантов

различной природы // Журн. аналит. химии. 2018. Т. 73. № 1. С. 14 – 21.

- 6. **Pryazhnikov D. V.**, Efanova O. O., Kubrakova I. V. Cerasomes containing magnetic nanoparticles: synthesis and gel-filtration chromatographic characterization // Mend. Comm. 2019. V. 29. № 2. P. 226-228.
- 7. **Pryazhnikov D. V.**, Kubrakova I. V., Grebneva-Balyuk O. N., Maryutina T. A. Magnetite-based highly dispersed materials for the sorption of asphaltenes // Mend. Comm. 2019. V. 29. №. 6. P. 1-3.
- 8. Кубракова И. В., **Пряжников Д. В**. Микроволновый синтез наноразмерных магнитных сорбентов // Журн. аналит. химии. 2021. Т. 76. № 1. С. 20-31.
- 9. **Пряжников Д.В.**, Кубракова И.В. Магнитные наноразмерные материалы с модифицированной поверхностью: получение и исследование структуры, состава и свойств. // Журн. аналит. химии. 2021. Т. 76. № 6. С. 496-521.
- 10. **Пряжников Д.В.,** Кубракова И.В., Панюкова Д.И., Марютина Т. А. Поверхностно-модифицированный оксид железа как сорбционный материал для извлечения асфальтенов // Журн. аналит. химии. 2022. Т. 77. № 5. С. 438-445.

В работах систематизированы данные о физико-химических и сорбционных свойствах материалов типа "ядро-оболочка", методах их характеризации и способах синтеза; исследовано формирование упорядоченных слоев из молекул ионных ПАВ на поверхности наночастиц; предложен расчетный метод для количественной характеристики степени заполнения поверхности частиц молекулами ПАВ. Предложены, синтезированы и исследованы виды модифицированных магнитных аналитических, технологических и наносорбентов для решения актуальных биомедицинских задач. Bce опубликованные работы Пряжникова Д.В. диссертационной работы. Недостоверные сведения соответствуют теме опубликованных соискателем учёной степени работах в диссертации отсутствуют. Требования к публикациям (пп. 13 и 14 Положения о порядке присуждения ученых степеней, утверждённого Постановлением Правительства РФ от 24.09.2013 г. № 842 в редакции от 11.09.2021) выполнены полностью. Наиболее значимые научные работы по теме диссертации, в том числе по специальности 1.4.2 – аналитическая химия входят в российские и международные базы данных, а также в перечень изданий ВАК при Минобрнауки России.

На диссертацию и автореферат поступило 4 отзыва. Все отзывы положительные. Положительный отзыв без замечаний поступил от:

Еремина Сергея Александровича, доктора химических наук, ведущего научного сотрудника лаборатории химической энзимологии химического факультета ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова»,

Положительных отзывов с вопросами и замечаниями – 3. Отзывы поступили от:

Суханова Павла Тихоновича, доктора химических наук, профессора кафедры физической и аналитической химии ФГБОУ ВО «Воронежский государственный университет инженерных технологий».

- В качестве замечания отмечу, что в автореферате не содержится информация

о разработанных способах определения аналитов после концентрирования и, соответственно, отсутствуют аналитические характеристики.

Лосева Владимира Николаевича, доктора химических наук, профессора, старшего научного сотрудника научной лаборатории № 2 ФГАОУ ВО «Сибирский федеральный университет».

- Первый пункт научной новизны. Вряд ли систематизация данных о "физикохимических свойствах" является научной новизной.
- Почему коэффициенты распределения ионов металлов и 4-нонилфенола, приведенные в автореферате на стр. 5,14,16 не имеют размерности? При сорбционном концентрировании коэффициенты распределения имеют размерность, например, в см³/г, за исключением случаев указания объема сорбента в мл. Однако на рис. 7,8 в автореферате указана масса используемого сорбента в мг, а на изотермах сорбции ось Y имеет размерность мкг/мг.
- Из автореферата не ясна цель синтеза и область применения бифункционального сорбента $Fe_3O_4@SiO_2@LTAF@SiO_2-(CH_2)_3$ -SH, способного извлекать из водных растворов органические соединения и халькофильные элементы, имеющие высокое сродство к серосодержащим реагентам. Поскольку это разные задачи, возникают вопросы о возможности раздельной десорбции органических соединений и ионов металлов, а также об устойчивости закрепленных слоев в различных по природе десорбирующих растворах, на которые в тексте автореферата, к сожалению, нет даже предполагаемого ответа.

Барановской Василисы Борисовны, доктора химических наук, ведущего научного сотрудника лаборатории химических методов анализа ФГБУН «Институт общей и неорганической химии им. Н.С. Курнакова».

- В качестве замечания могу отметить, что в автореферате не представлены результаты анализа исследуемых объектов с применением сорбционного концентрирования, что не позволило оценить аналитические и метрологические характеристики предложенного методического подхода.

В поступивших отзывах отмечается, что Д.В.Пряжниковым выполнено актуальное исследование, посвященное созданию и аналитическому применению магнитных наночастиц как сорбентов для широкого круга веществ. Диссертация является законченным исследованием, обладает всеми признаками новизны, результаты работы имеют большое значение для теории и практики синтеза, характеризации и использования поверхностно-модифицированных магнитных наночастиц в качестве сорбционных материалов при решении актуальных технологических биомедицинских аналитических, И задач. Достоверность полученных результатов и обоснованность выводов не вызывает сомнения. Замечания, приведенные в отзывах, не носят принципиального характера и не снижают общего высокого уровня диссертации. Работа в полной мере соответствует п.9 Положения о порядке присуждения ученых степеней, а ее автор заслуживает присуждения ученой степени кандидата химических наук по специальности 1.4.2 – аналитическая химия.

Выбор официальных оппонентов и ведущей организации обосновывается их научными и практическими достижениями в области аналитической химии.

Диссертационный совет отмечает, что на основании выполненных соискателем исследований выявлены системные связи между структурой поверхности модифицированных магнитных наночастиц и их сорбционными свойствами, проведен направленный выбор структуры поверхностного слоя актуальных сорбционных задач. решения Синтезированы наночастиц ДЛЯ магнитные материалы с поверхностью в виде упорядоченных слоев, а также мицелл поверхностно-активных веществ (ПАВ) в упорядоченных мезопорах на поверхности магнитных наночастиц. На основе построения и анализа изотерм сорбции (в сочетании с данными измерения ξ-потенциала) предложен способ оценки степени заполнения поверхности наномагнетита молекулами модификаторов, при этом установлено, что плотность заполнения поверхности магнитных наночастиц молекулами ПАВ повышается в условиях микроволнового нагрева.

Методом послойного модифицирования поверхности получены материалы строения $Fe_3O_4@SiO_2@ ext{U}TAF^1$, $Fe_3O_4@SiO_2@ ext{U}TAF@SiO_2$ и $Fe_3O_4@SiO_2@ ext{U}TAF@SiO_2-(CH_2)_3$ -SH, предназначенные для экоаналитических исследований. Предложен способ количественного определения 4-нонилфенола в водных объектах, предусматривающий концентрирование в статических условиях с использованием предложенных материалов и последующий ВЭЖХ-анализ.

Исследованы возможности использования модифицированных магнитных наночастиц для извлечения компонентов органических сред. Путем модифицирования наноразмерного магнетита тетраэтоксисиланом синтезирован высокодисперсный материал $Fe_3O_4@SiO_2$, который может быть перспективен для выделения асфальтенов в технологиях облагораживания тяжелого нефтяного сырья.

Предложены и реализованы способы получения многофункциональных материалов для биомедицины. На примере антибиотика доксорубицина изучены процессы его иммобилизации и выделения при разных временах контакта фаз, концентрации сорбата и рН среды. Установлено, что кислотность среды позволяет контролировать высвобождение сорбата с поверхности $Fe_3O_4@SiO_2-(CH_2)_3-SH@Au_{колл}$. Показана принципиальная возможность применения предложенных магнитных нанокомпозитов для целевой доставки лекарств.

исследования обоснована Теоретическая значимость применительно к проблематике диссертации выявлена взаимосвязь структуры поверхности модифицированных магнитных наночастиц и их сорбционных свойств. Предложен расчетный способ количественной оценки плотности заполнения модифицирующего (сорбционного) слоя на поверхности наноразмерного магнетита. Для сорбентов состава Fe_3O_4 @ЦТАБ, Fe_3O_4 @ОК² и Fe_3O_4 @SiO₂@ЦТАБ выявлены слоя, сформированного В условиях обычного характеристики ЭТОГО микроволнового нагрева.

¹ ЦТАБ – цетилтриметиламмоний бромид;

 $^{^{2}}$ ОК – олеиновая кислота;

Значение полученных соискателем результатов исследования для практики подтверждается тем, что разработаны подходы для направленного синтеза и характеризации материалов на основе магнитных наночастиц с многослойной оболочкой, даны рекомендации по их использованию для решения аналитических задач при определении ионов тяжелых металлов и ряда органических соединений, а также для доставки лекарственных препаратов.

Оценка достоверности результатов исследования выявила: результаты получены с использованием широкого круга физико-химических методов и современного лабораторного оборудования. Определены метрологические характеристики результатов, установлено количественное совпадение авторских результатов с данными, представленными в независимых источниках по данной тематике. Объем исследований достаточен для обоснования выносимых на защиту положений.

Личный вклад соискателя состоит в поиске, систематизации и анализе опубликованных данных по поставленным задачам исследования, определении методов решения, в планировании и непосредственном проведении экспериментов, в анализе, обработке и интерпретации полученных данных и подготовке публикаций по результатам исследований.

Большинство замечаний, высказанных в ходе защиты, носило характер вопросов, уточнений и предложений. В частности, в отзывах В.Б.Барановской и П.Т.Суханова указано на ограниченное количество данных о представленных в реферате аналитических характеристиках определения компонентов. Кроме того, в одном из выступлений (проф. Ищенко А.А.) прозвучало замечание о токсичности магнетита при его использовании в биомедицине, что может ограничить применимость разрабатываемых препаратов. Соискатель Пряжников Д.В. в своих ответах привел дополнительную информацию по аналитическому применению магнитных наноматериалов, опубликованную в работах, в которых он является одним из авторов (Журн. аналит. химии. 2018. Т.73. С.14-21; Аналитика и контроль. *2015. Т.19. С.220-229*), а также дополнительную аргументацию по вопросу токсичности магнетита, указав, что большинство исследователей в области медицинской и биоорганической химии рассматривает модифицированные магнитные материалы в качестве одного из наиболее перспективных и безопасных доставки лекарств. Приведенная соискателем аргументация положительно оценена присутствующими на заседании оппонентами, членами диссертационного совета и другими участниками заседания.

Диссертационная работа Пряжникова Д.В. свойства «Структура модифицированных наноматериалов сорбционного магнитных ДЛЯ концентрирования» на соискание ученой степени кандидата химических наук представляет собой научно-квалификационную работу, которая соответствует п.9 "Положения о порядке присуждении ученых (Постановление правительства $P\Phi$ от 24 сентября 2013г. № 842 в ред. от 11.09.2021). Содержание работы соответствует специальности 1.4.2 Аналитическая химия.

На заседании 21 июля 2022 г. диссертационный совет принял решение: за установление связей между поверхностной структурой и сорбционными свойствами высокодисперсных магнитных материалов, а также получение и исследование новых материалов, перспективных для решения аналитических, технологических и биомедицинских задач, присудить Пряжникову Д.В. ученую степень кандидата химических наук.

При проведении тайного голосования диссертационный совет в количестве 21 человека (13 присутствовали на заседании очно, 8 – в удаленном интерактивном режиме), из них 15 докторов наук по специальности 1.4.2 – аналитическая химия, в том числе 4 доктора наук, обеспечивающих химические науки, участвовавших в заседании, из 28 человек, входящих в состав совета, проголосовали: 320, против – 321; не голосовали – 320.

Председатель

диссертационного совета,

академик РАН,

доктор хим. наук

Мясоедов Борис Федорович

Ученый секретары

диссертационного совета,

кандидат хим наук

Захарченко Елена Александровна

21 июля 2022 года

ОРДЕНА ЛЕНИНА И ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ ИНСТИТУТ ГЕОХИМИИ И АНАЛИТИЧЕСКОЙ ХИМИИ ИМ. В.И. ВЕРНАДСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК (ГЕОХИ РАН)

Протокол № 10

заседания диссертационного совета 24.1.195.01 от 21.07.2022

Состав диссертационного совета утвержден в количестве **28** человек. Присутствовали на заседании **21** человек (13 – очно, 8 – удаленно).

Председатель: д. хим.наук, профессор Мясоедов Борис Федорович, академик РАН (председателья совета)

Присутствовали: академик РАН, д. хим.наук, профессор Мясоедов Борис Федорович, член-корр. РАН, д. хим.наук, профессор Колотов Владимир Пантелеймонович, д. физ.-мат.наук, Баранов Виктор Иванович, д. физ.-мат.наук, профессор Большов Михаил Александрович, д. хим.наук Гречников Александр Анатольевич, д. геол.-мин.наук Горностаева Татьяна Александровна, д. физ.-мат.наук, профессор Дементьев Василий Александрович, д. хим.наук, профессор Долгоносов Анатолий Михайлович, д. биол.наук, профессор Ермаков Вадим Викторович, д. техн.наук, профессор Зуев Борис Константинович, д. хим.наук, профессор Ищенко Анатолий Александрович, д. геол.-мин.наук, доцент Коробова Елена Михайлович, д. хим.наук Кубракова Ирина Витальевна, д. хим.наук Куляко Юрий Михайлович, д. хим.наук Марютина Татьяна Анатольевна, д. хим.наук Новиков Александр Павлович, д. физ.-мат.наук Прудковский Андрей Гаральдович, д. физ.-мат.наук, профессор Филиппов Михаил Николаевич, д. хим.наук, профессор Шеховцова Татьяна Николаевна, д. хим.наук Шкинев Валерий Михайлович, к. хим.наук Захарченко Елена Александровна (всего 21 человек)

Слушали:

Защиту диссертационной работы **Пряжникова Дмитрия Владимировича** «**Структура и свойства модифицированных магнитных наноматериалов для сорбционного концентрирования»** на соискание ученой степени кандидата химических наук по специальности 1.4.2 — аналитическая химия.

Диссертационная работа выполнена в лаборатории геохимии и аналитической химии благородных металлов Федерального государственного бюджетного учреждения науки Ордена Ленина и Ордена Октябрьской Революции Института

геохимии и аналитической химии им. В.И. Вернадского Российской академии наук (ГЕОХИ РАН).

Научный руководитель работы — доктор химических наук Кубракова Ирина Витальевна, г.н.с., зав. лабораторией геохимии и аналитической химии благородных металлов ГЕОХИ РАН.

Официальные оппоненты по диссертации:

Апяри Владимир Владимирович, доктор химических наук, Федеральное государственное бюджетное образовательное учреждения высшего образования «Московский государственный университет имени М.В. Ломоносова», химический факультет, кафедра аналитической химии, главный научный сотрудник.

Гражулене Светлана Степановна, доктор химических наук, Федеральное государственное бюджетное учреждение науки Институт проблем технологии микроэлектроники и особо чистых материалов Российской академии наук (ИПТМ РАН), экспериментально-технологическая лаборатория, главный научный сотрудник.

Ведущая организация:

Федеральное государственное бюджетное образовательное учреждение высшего образования Кубанский государственный университет (ФГБОУ ВО «КубГУ», г. Краснодар).

Основное содержание работы опубликовано в 18 работах, в том числе в 10 статьях в журналах из перечня научных изданий, входящих в Международные реферативные базы данных и в список ВАК. Требования к публикациям основных научных результатов, предусмотренные п.11 – 13 Положения, а также требования п. 10 и 14 выполнены полностью.

Отзывы оппонентов и ведущей организации – положительные. На диссертацию поступило 4 отзыва – все отзывы положительные.

В ходе защиты диссертации критических замечаний высказано не было. Соискатель Пряжников дал аргументированные ответы на все задаваемые в ходе заседания вопросы и высказанные замечания. Приведенная им аргументация была положительно оценена присутствующими на заседании оппонентами и членами диссертационного совета.

Постановили:

Диссертационная работа Пряжникова Дмитрия Владимировича «Структура и свойства модифицированных магнитных наноматериалов для сорбционного концентрирования» на соискание ученой степени кандидата химических наук представляет собой научно-квалификационную работу, которая соответствует критериям п.9 "Положения о порядке присуждения ученых степеней" (Постановление правительства $P\Phi$ от 24 сентября 2013 г N2 842 в ред. от

11.09.2021). Содержание работы соответствует специальности 1.4.2 — аналитическая химия.

На заседании 21 июля 2022 г. диссертационный совет принял решение: за установление связей между поверхностной структурой и сорбционными свойствами высокодисперсных магнитных материалов, а также получение и исследование новых материалов, перспективных для решения аналитических, технологических и биомедицинских задач, присудить Пряжникову Д.В. ученую степень кандидата химических наук.

При проведении тайного голосования диссертационный совет в количестве 21 человека (13 присутствовали на заседании очно, 8 – в удаленном интерактивном режиме), из них 15 докторов наук по специальности 1.4.2 – аналитическая химия, в том числе 4 доктора наук, обеспечивающих химические науки, участвовавших в заседании, из 28 человек, входящих в состав совета, проголосовали: 320, против – 321; не голосовали – 320.

Председатель

диссертационного совета,

академик РАН,

доктор хим. наук

Мясоедов Борис Федорович

Ученый секретарь

диссертационного совета.

кандидат хим. наук

Захарченко Елена Александровна

21 июля 2022 года